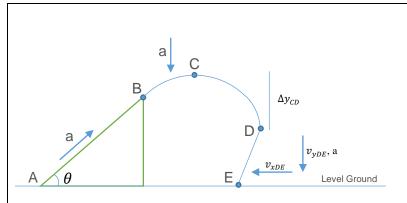
Uber Rocket Problem

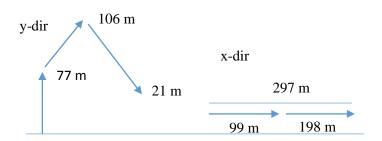
Sahil A. Nawab Section B November 1, 2015



Givens:

Launch Angle	38° N of E
Engine Burn Time	6.6 seconds
Net Acceleration (AB)	$5.8 m/s^2$
Δy (CD)	85 m
Wind Speed	-9 m/s
Parachute Speed	-13 m/s

 $v_{By} = a_y t + v_{Ay}$ $v_{By} = 3.5708(6.6)$ $v_{By} = 23.568 \text{ m/s}$



 $v_{Bx} = a_x t + v_{Ax}$ $v_{Bx} = 4.5705(6.6)$ $v_{Bx} = 30.165 m/s$

$$x_E = 267.3 meters$$

Description: One breezy afternoon Algebra Alex decides to launch Hamster Huey into the air using a model rocket. The rocket is launched over level ground, from rest, at a specified angle above the East horizontal. The rocket engine is designed to burn for specified time while producing a constant net acceleration for the rocket. Assume the rocket travels in a straight-line path while the engine burns. After the engine stops the rocket continues in projectile motion. A parachute opens after the rocket falls a specified distance from its maximum height. When the parachute opens the rocket instantly slows and descends at a constant vertical speed. A horizontal wind blows the rocket, with parachute, from the East to West. Assume the wind affects the rocket only during the parachute stage.

Stage 1 (AB): I componentized the acceleration vectors and used EQ3 to calculate the x and y displacements at B.

$\sin 38 = \frac{a_y}{5.8}$	$\cos 38 = \frac{a_x}{5.8}$
$5.8 \sin 38 = a_y$	$5.8\cos 38 = a_x$
$a_y = 3.5708$	$a_x = 4.5705$
$y_B = \frac{1}{2}a_y t^2 + v_{Ay} t + y_A$	$x_B = \frac{1}{2} a_x t^2 + v_{Ax} t + x_A$
$y_B = \frac{1}{2}(3.5708)(6.6^2)$	$x_B = \frac{1}{2}(4.5705)(6.6^2)$
$y_B = 77.773 \text{ meters}$	$x_B = 99.545 meters$

Stage 2 (BD): I calculated the maximum height of the rocket during its projectile motion phase and subtracted 85 to find y_D . Using that value, I calculated time and solved for x_D .

$$y_C = \frac{1}{2}a_yt^2 + v_{By}t + y_B$$

$$y_C = -4.9t^2 + 23.568t + 77.773, vertex$$

$$\frac{-b}{2a} = \frac{-23.568}{-9.8} = 2.4098 seconds$$

$$y_C = -4.9(2.4048)^2 + 23.568(2.4048) + 77.773$$

$$y_C = 106.11 meters$$

$$-85 = y_D = 21.111 m$$

$$y_B = \frac{1}{2}a_yt^2 + V_{By}t + y_B$$

$$21.111 = -4.9t^2 + 23.568t + 77.773$$

$$0 = -4.9t^2 + 23.568t + 56.662, solve$$

$$t = \{-1.7601, 6.5698\}$$

$$\underline{t = 6.5698 \ seconds}$$

$$x_D = v_{Bx}t$$

 $x_D = 30.165(6.5698)$
 $x_D = 198.18 meters$

Stage 3 (DE): The parachute gave the rocket an y-velocity of -9 m/s downwards and a x-velocity of -13 m/s eastwards. I calculated the time for the rocket to fall and solved for x_E .

$$y_{E} = \frac{1}{2}a_{y}t^{2} + v_{Dy}t + y_{D}$$

$$0 = 0 - 9t + 21.111$$

$$t = 2.3457$$

$$X_{E} = v_{Dx} + x_{D}$$

$$x_{E} = -13(2.35) + 297.7$$

$$x_{E} = 267.23 \text{ meters}$$